AQA Physics
 GCSE Student Checklist

P11 Force and pressure

Name			Class		Date	
Lesson	Aiming for 4		Aiming for 6		Aiming for 8	
P11.1 Pressure and surfaces	I can state the factors that affect the pressure acting on a surface.		I can describe the effect on the pressure of changing the area of contact or weight acting on a surface.		I can apply the concept of pressure in explaining the effect on a surface in a wide range of contexts.	\square
	I can calculate the pressure caused by an object resting on a surface, given the force and area of contact.	\square	I can calculate forces or areas of contact.		I can perform pressure calculations including conversion of areas and forces with SI multiplier prefixes.	
	I can state that pressure can be caused by the action of fluids (liquids and gases) on a surface.	\pm	I can use SI prefixes in expressions for pressure as appropriate.		I can estimate uncertainty in values for pressure using experimental data.	
P11.2 Pressure in a liquid at rest			I can use the concept of force, mass, and volume to explain why the pressure increases with depth in a liquid.		I can use algebraic techniques to derive the equation $p=h \rho g$.	
			I can calculate the pressure at a point in a liquid using $p=h \rho g$.	\pm	I can rearrange the equation $p=h \rho g$ to solve a range of questions involving the pressure in a liquid.	
			I can use the concept of pressure in a liquid to explain a range of structural design features.		I can apply the equation for pressure in a liquid to explain the design of dams or other structures.	
P11.3 Atmospheric pressure	I can state that the pressure of the atmosphere decreases with height above the Earth's surface.		I can calculate the forces produced be pressure differences.		I can use the particle model to explain in detail the changes in atmospheric pressure.	
	I can state that the density of the atmosphere decreases with height.		I can describe the change in pressure at different heights.		I can explain a range of phenomena in terms of pressure difference.	
	I can describe the cause of atmospheric pressure in simple terms.	\pm	I can use the equation $p=h \rho g$ to determine pressure in a fluid.		I can explain why the relationship $p=$ $h \rho g$ is not suitable for calculating changes in pressure in the atmosphere over a large change in height.	\square

AQA Physics GCSE Student Checklist

P11 Force and pressure

Name Class \quad Date

Lesson	Aiming for 4	Aiming for 6		Aiming for 8	
P11.4 Upthrust and flotation	\square	I can describe the relationship between Upthrust and weight for floating and submerged objects.		I can calculate the upthrust acting on a submerged object by using the pressure to the upthrust provided.	
	\square	I can compare the density of an object with the density of a liquid to determine whether or not the object will float.		I can use algebraic techniques to show that the weight of liquid displaced is equal to the upthrust provided.	
	\square	I can plan an investigation into the relationship between the average density of an object and the distance it submerges.		I can carry out and evaluate in detail an investigation into the relationship between the average density of an object and the distance it submerges.	

