AQA Physics GCSE Student Checklist

. .

P10 Forces and motion

Name			Class	 Date	
Lesson	Aiming for 4		Aiming for 6	Aiming for 8	
P10.1 Force and acceleration	I can state the factors that will affect the acceleration of an object acted on by a resultant force.		I can describe the effect of changing the mass or the force acting on an object on the acceleration of that object.	I can define the inertial mass of an object in terms of force and acceleration.	
	I can calculate the force required to cause a specified acceleration on a given mass.	\Box	I can perform calculations involving the rearrangement of the $F = ma$ equation.	I can calculate the acceleration of an object acted on by several forces.	
	I can investigate a factor that affects the acceleration of a mass.		I can combine separate experimental conclusions to form an overall conclusion.	I can evaluate an experiment by identifying sources of error and determining uncertainty in the resulting data.	
P10.2 Weight and terminal velocity	I can state the difference between the mass of an object and its weight.		I can calculate the weight of objects using their mass and the gravitational field strength.	I can apply the mathematical relationship between mass, weight, and gravitational field strength in a range of situations.	
	I can describe the forces acting on an object falling through a fluid.		I can apply the concept of balanced forces to explain why an object falling through a fluid will reach a terminal velocity.	I can explain the motion of an object falling through a fluid by considering the forces acting through all phases of motions.	
	I can investigate the motion of an object when it falls.		I can investigate the relationship between the mass of an object and the terminal velocity.	I can evaluate the repeatability of an experiment by considering the spread of the results.	
P10.3 Forces and braking			I can state factors which affect the stopping distance of a car.	I can categorise factors which affect thinking distance, braking distance and both.	
			I can calculate the thinking distance for a car from the initial speed and reaction time.	I can calculate the braking distance of a car.	
			I can estimate the relative effects of changing factors which affect the stopping distance of cars.	I can describe the relationship between speed and both thinking and braking distance.	

© Oxford University Press 2016 www.oxfordsecondary.co.uk/acknowledgements

This resource sheet may have been changed from the original.

AQA Physics GCSE Student Checklist

P10 Forces and motion

Name		Class		Date	
Lesson	Aiming for 4	Aiming for 6		Aiming for 8	
		I can apply the equation $p = mv$ to find the momentum, velocity or mass of an object.	\Box	I can fully describe the motion of objects after an explosion accounting for any frictional effects.	
P10.4 Momentum		I can describe how the principle of conservation of momentum can be used to find the velocities of objects.		I can apply principle of conservation of momentum to a range of calculations involving the velocities of objects.	
		I can investigate the behaviour of objects during explosions to verify the conservation of momentum.		I can evaluate the data produced from an investigation and compare this to a theoretical framework.	
		I can apply the law of conservation of momentum to find the momentum before and after impacts.		I can apply the law of conservation of momentum to find velocities of objects.	
P10.5 Using conservation of		I can calculate the momentum of a combination of objects after an impact.	\Box	I can analyse the velocities of objects in a wide range of collisions.	\square
momentum		I can evaluate data used to verify the law of conservation of momentum.		I can evaluate an experimental technique and discuss in detail the factors which lead to differences between experimental data and an accepted law.	
P10.6 Impact forces		I can describe collisions in terms of forces and conservation of momentum.		I can apply the concept of equal and opposite forces in collisions to explain why momentum is conserved in impacts.	
		I can calculate the force involved in an impact from the change in momentum and time.		I can calculate changes in velocity and momentum during impacts using the force involved in the impact and the impact time.	
		I can design features that will reduce the size of impact forces in a collision.	\Box	I can plan an investigation into the impact forces involved in a collision and how they can be reduced.	

© Oxford University Press 2016 www.oxfordsecondary.co.uk/acknowledgements

This resource sheet may have been changed from the original.

AQA Physics GCSE Student Checklist

P10 Forces and motion

Name_____ Class_____ Date_____

Lesson	Aiming for 4	Aiming for 6		Aiming for 8	
P10.7 Safety first		I can describe the operation of some safety features of a car in simple terms.		I can use scientific principles such as rate of change of momentum to explain detail the operation of a range of change of momentum to explain in detail the operation of a range of car safety features.	
		I can identify critical data which can be used to examine the cause of an accident.		I use data about an accident to discuss its likely cause.	
		I can report on the differences in safety features between expensive and inexpensive cars.	\Box	I can evaluate a range of optional safety features based on their costs and effectiveness.	
P10.8 Forces and elasticity		I can explain the limitations of Hooke's law including the limit of proportionally.	\Box	I can find the spring constant of a spring using a graphical technique.	\Box
		I can calculate the force required to cause a given extension in a spring using the spring constant.		I can Hooke's law equation in a wide of situations.	
		I can compare the behaviour of different materials under loads in terms of proportional and non-proportional behaviour.		I can evaluate an investigation into the extension of materials in terms of the precision of the data.	