Foundation tier

Foundation tier students will be assessed on content identified by the standard and underlined type. Foundation tier students will not be assessed on content identified by bold type. (Underlined type means that candidates typically find this more challenging).

Higher tier

Higher tier students will be assessed on all the content which is identified by the standard, underlined and bold type.
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Assessment Title } & \text { Topic Area/s } \\
\hline \begin{array}{l}\text { Paper } 1 \text { - } \\
\text { Number and } \\
\text { Ratio } \\
\text { (non-calculator) }\end{array}
$$ \& Structure and calculation

order positive and negative integers, decimals and fractions; use the symbols

=, \neq,<,>, \leq, \geq

apply the four operations, including formal written methods, to integers, decimals

and simple fractions (proper and improper), and mixed numbers - all both positive

and negative; understand and use place value (e.g. when working with very large or

very small numbers, and when calculating with decimals)\end{array}\right]\) N3 | recognise and use relationships between operations, including inverse operations |
| :--- |
| (e.g. cancellation to simplify calculations and expressions); use conventional |
| notation for priority of operations, including brackets, powers, roots and |
| reciprocals |

(such as 3.5 and $\frac{7}{2}$ or 0.375 or $\frac{3}{8}$); change recurring decimals into their corresponding fractions and vice versa

N11 identify and work with fractions in ratio problems

N12 interpret fractions and percentages as operators

Measures and accuracy

N13 use standard units of mass, length, time, money and other measures (including standard compound measures) using decimal quantities where appropriate

N14 estimate answers; check calculations using approximation and estimation, including answers obtained using technology
round numbers and measures to an appropriate degree of accuracy (e.g. to a specified number of decimal places or significant figures); use inequality notation to specify simple error intervals due to truncation or rounding
apply and interpret limits of accuracy, including upper and lower bounds
Ratio, proportion and rates of change
R1 change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts

R2 use scale factors, scale diagrams and maps
express one quantity as a fraction of another, where the fraction is less than 1 or greater than 1

R4 use ratio notation, including reduction to simplest form
divide a given quantity into two parts in a given part:part or part:whole ratio; express the division of a quantity into two parts as a ratio; apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing, concentrations)

R6 express a multiplicative relationship between two quantities as a ratio or a fraction
R7 understand and use proportion as equality of ratios

R

R
R9
define percentage as 'number of parts per hundred'; interpret percentages and percentage changes as a fraction or a decimal, and interpret these multiplicatively; express one quantity as a percentage of another; compare two quantities using percentages; work with percentages greater than 100\%; solve problems involving percentage change, including percentage increase/decrease and original value problems, and simple interest including in financial mathematics
solve problems involving direct and inverse proportion, including graphical and algebraic representations

\begin{tabular}{|c|c|c|}
\hline \& A19
A20
A21

A22

Seque
A23
A24

A25 \& | solve two simultaneous equations in two variables (linear/linear or linear/quadratic algebraically; find approximate solutions using a graph |
| :--- |
| find approximate solutions to equations numerically using iteration |
| translate simple situations or procedures into algebraic expressions or formulae; derive an equation (or two simultaneous equations), solve the equation(s) and interpret the solution |
| solve linear inequalities in one or two variable(s), and quadratic inequalities in one variable; represent the solution set on a number line, using set notation and on a graph |
| nces |
| generate terms of a sequence from either a term-to-term or a position-to-term rule recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, Fibonacci type sequences, quadratic sequences, and simple geometric progressions (r^{n} where n is an integer, and r is a rational number ≥ 0 or a surd) and other sequences |
| deduce expressions to calculate the nth term of linear and quadratic sequences |

\hline | Paper 3 |
| :--- |
| Geometry and Measure (calculator) | \& Prop ${ }_{\text {G1 }}$ \& | ties and constructions |
| :--- |
| use conventional terms and notation: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries; use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description |
| use the standard ruler and compass constructions (perpendicular bisector of a line segment, constructing a perpendicular to a given line from/at a given point, bisecting a given angle); use these to construct given figures and solve loci problems; know that the perpendicular distance from a point to a line is the shortest distance to the line |
| apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons) |
| derive and apply the properties and definitions of special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language |
| use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS) |
| apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, including Pythagoras' Theorem and the fact that the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs |

\hline
\end{tabular}

identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection, translation and enlargement (including fractional and negative scale factors)

G8 describe the changes and invariance achieved by combinations of rotations, reflections and translations

G9 identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference, tangent, arc, sector and segment
apply and prove the standard circle theorems concerning angles, radii, tangents and chords, and use them to prove related results

G11 solve geometrical problems on coordinate axes
identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids, cones and spheres

G13 construct and interpret plans and elevations of 3D shapes

Mensuration and calculation
G14 use standard units of measure and related concepts (length, area, volume/capacity, mass, time, money, etc.)

G15 measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings

G16 know and apply formulae to calculate: area of triangles, parallelograms, trapezia; volume of cuboids and other right prisms (including cylinders)

G17 know the formulae: circumference of a circle $=2 \pi r=\pi d$, area of a circle $=\pi r^{2}$; calculate: perimeters of 2D shapes, including circles; areas of circles and composite shapes; surface area and volume of spheres, pyramids, cones and composite solids
calculate arc lengths, angles and areas of sectors of circles
apply the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar figures
know the formulae for: Pythagoras' theorem $a^{\underline{2}}+b^{\underline{2}}=c^{\underline{2}}$, and the trigonometric ratios, $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}, \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$ and $\tan \theta==^{\frac{\text { opposite }}{\text { adjacent }}}$; apply them to find angles and lengths in right-angled triangles and, where possible, general triangles in two- and three-dimensional figures
know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°; know the exact value of $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°

G22 know and apply the sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$, and cosine rule $\boldsymbol{a}^{\mathbf{2}}=\boldsymbol{b}^{\mathbf{2}}+\boldsymbol{c}^{\mathbf{2}}$ $-2 b c \cos A$, to find unknown lengths and angles

G23 know and apply Area $=\frac{1}{2} a b \sin C$ to calculate the area, sides or angles of any triangle

	Vectors G24 describe translations as 2D vectors G25 apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors; use vectors to construct geometric arguments and proofs
Paper 4 Statistics and Probability (calculator)	Probability
	P1 record, describe and analyse the frequency of outcomes of probability experiments using tables and frequency trees
	P2 apply ideas of randomness, fairness and equally likely events to calculate expected outcomes of multiple future experiments
	P3 relate relative expected frequencies to theoretical probability, using appropriate language and the 0-1 probability scale
	P4 apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the probabilities of an exhaustive set of mutually exclusive events sum to one
	P5 understand that empirical unbiased samples tend towards theoretical probability distributions, with increasing sample size
	P6 enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams and tree diagrams
	P7 construct theoretical possibility spaces for single and combined experiments with equally likely outcomes and use these to calculate theoretical probabilities
	P8 calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions
	P9 calculate and interpret conditional probabilities through representation using expected frequencies with two-way tables, tree diagrams and Venn diagrams
	Statistics
	S1 infer properties of populations or distributions from a sample, while knowing the limitations of sampling
	S2 interpret and construct tables, charts and diagrams, including frequency tables, bar charts, pie charts and pictograms for categorical data, vertical line charts for ungrouped discrete numerical data, tables and line graphs for time series data and know their appropriate use
	S3 construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with equal and unequal class intervals and cumulative frequency graphs, and know their appropriate use
	S4 interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: - appropriate graphical representation involving discrete, continuous and grouped

data, including box plots

- appropriate measures of central tendency (median, mean, mode and modal class) and spread (range, including consideration of outliers), quartiles and inter-quartile range

S5 apply statistics to describe a population
S6 use and interpret scatter graphs of bivariate data; recognise correlation and know that it does not indicate causation; draw estimated lines of best fit; make predictions; interpolate and extrapolate apparent trends while knowing the dangers of so doing

