

Computing

AS

Contents
Specification followed ... 3

Content of Computing principles (Component 01)... 4

1.1. The characteristics of contemporary processors, input, output and storage devices 4

1.2. Software and software development .. 5

1.3. Exchanging data ... 6

1.4. Data types, data structures and algorithms ... 7

1.5. Legal, moral, ethical and cultural issues .. 8

Content of Algorithms and problem solving (Component 02) ... 9

2.1. Elements of computational thinking .. 9

2.2. Problem solving and programming .. 10

2.3 Algorithms ... 10

Specification followed

Content of Computing principles (Component 01)
This component will introduce learners to the internal workings of the Central Processing
Unit (CPU), the exchange of data and will also look at software development, data types and
legal and ethical issues. It is expected that learners will draw on this underpinning content
when studying computational thinking and developing programming techniques.

You will be expected to apply the criteria, in the tables below, in different contexts including current
and future uses of the technologies.

1.1. The characteristics of contemporary processors, input, output and storage devices

Components of a computer and their uses

Confident Developing With
difficulty

1.1.1 Structure and function of the processor
a) The Arithmetic and Logic Unit; ALU,
Control Unit and Registers (Program
Counter; PC, Accumulator; ACC, Memory
Address Register; MAR, Memory Data
Register; MDR, Current Instruction Register;
CIR). Buses: data, address and control: How
this relates to assembly language programs.
b) The fetch-decode-execute cycle, including
its effect on registers.
c) The factors affecting the performance of
the CPU, clock speed, number of cores,
cache.
d) Von Neumann, Harvard and contemporary
processor architecture.

1.1.2 Types of processor
a) The differences between, and uses of,
CISC and RISC processors.
b) Multicore and parallel systems.

1.1.3 Input, output and storage
a) How different input output and storage
devices can be applied as a solution of
different problems.
b) The uses of magnetic, flash and optical
storage devices.
c) RAM and ROM.
d) Virtual storage.

1.2. Software and software development
Types of software and the different
methodologies used to develop software

Confident Developing With
difficulty

1.2.1 Operating Systems
a) The need for, function and purpose of
operating systems.
b) Memory management (paging,
segmentation and virtual memory).
c) Interrupts, the role of interrupts and
Interrupt Service Routines (ISR), role within
the fetch decode execute cycle.
d) Scheduling: round robin, first come first
served, multi-level feedback queues, shortest
job first and shortest remaining time.
e) Distributed, embedded, multi-tasking,
multi-user and real time operating systems.
f) BIOS.
g) Device drivers.
h) Virtual machines, any instance where
software is used to take on the function of a
machine including executing intermediate
code or running an operating system within
another.

1.2.2 Applications generation
a) The nature of applications, justifying
suitable applications for a specific purpose.
b) Utilities.
c) Open source vs Closed source.
d) Translators: interpreters, compilers and
assemblers.

1.2.3 Introduction to programming
a) Procedural programming language
techniques:
program flow
variables and constants
procedures and functions
arithmetic, Boolean and assignment
operators
string handling
file handling.
b) Assembly language (including following
and writing simple programs with Little Man
Computer).

1.3. Exchanging data
How data is exchanged between different
systems

Confident Developing With
difficulty

1.3.1 Databases
a) Relational database, flat file, primary key,
foreign key, secondary key, entity relationship
modelling.
b) Methods for capturing, selecting, managing
and exchanging data.

1.3.2 Networks
a) Characteristics of networks and the
importance of protocols and standards.
b) Internet structure:
The TCP/IP Stack.
DNS
Protocol layering.
LANs and WANs.
Packet and circuit switching.
c) Client-server and Peer to peer.

1.3.3 Web Technologies
a) HTML, CSS and JavaScript.
b) Lossy v lossless compression.

1.4. Data types, data structures and algorithms
How data is represented and stored within
different structures. Different algorithms
that can be applied to these structures

Confident Developing With
difficulty

1.4.1 Data Types
a) Primitive data types, integer, real/floating
point, character, string and Boolean.
b) Represent positive integers in binary.
c) Use of sign and magnitude and two’s
complement to represent negative numbers
in binary.
d) Addition and subtraction of binary integers.
e) Represent positive integers in
hexadecimal.
f) Convert positive integers between Binary
Hexadecimal and denary.
g) Positive and negative real numbers using
normalised floating point representation.
h) How character sets (ASCII and UNICODE)
are used to represent text.

1.4.2 Data Structures
a) Arrays (of up to 3 dimensions), records,
lists, tuples.
b) The properties of stacks and queues.

1.4.3 Boolean Algebra
a) Define problems using Boolean logic. See
appendix 5e.
b) Manipulate Boolean expressions, including
the use of Karnaugh maps to simplify
Boolean expressions.
c) Use logic gate diagrams and truth tables.

1.5. Legal, moral, ethical and cultural issues
The individual (moral), social (ethical) and
cultural opportunities and risks of digital
technology. Legislation surrounding the
use of computers and ethical issues that
can or may in the future arise from the use
of computers

Confident Developing With
difficulty

1.5.1 Computing related legislation
a) The Data Protection Act 1998.
b) The Computer Misuse Act 1990.
c) The Copyright Design and Patents Act
1988.
d) The Regulation of Investigatory Powers Act
2000.

1.5.2 Ethical, moral and cultural issues
a) The individual (moral), social (ethical) and
cultural opportunities and risks of digital
technology:
Computers in the workforce
Automated decision making
Artificial intelligence
Environmental effects
Censorship and the Internet
Monitor behaviour
Analyse personal information
Piracy and offensive communications
Layout, colour paradigms and character sets.

Content of Algorithms and problem solving (Component 02)
This component will incorporate and build on the knowledge and understanding gained in
the Computing principles component. In addition, you should:

 understand what is meant by computational thinking

 understand the benefits of applying computational thinking to solving problems
 be able to use algorithms to describe problems.

2.1. Elements of computational thinking
Understand what is meant by
computational thinking

Confident Developing With
difficulty

2.1.1 Thinking abstractly
a) The nature of abstraction.
b) The need for abstraction.
c) The differences between an abstraction
and reality.
d) Devise an abstract model for a variety of
situations.

2.1.2 Thinking ahead
a) Identify the inputs and outputs for a given
situation.
b) Determine the preconditions for devising a
solution to a problem.
c) The need for reusable program
components.

2.1.3 Thinking procedurally
a) Identify the components of a problem.
b) Identify the components of a solution to a
problem.
c) Determine the order of the steps needed to
solve a problem.
d) Identify sub-procedures necessary to solve
a problem.

2.1.4 Thinking logically
a) Identify the points in a solution where a
decision has to be taken.
b) Determine the logical conditions that affect
the outcome of a decision.
c) Determine how decisions affect flow
through a program.

2.2. Problem solving and programming
How computers can be used to solve
problems and programs can be written to
solve them

Confident Developing With
difficulty

2.2.1 Programming techniques
a) Programming constructs: sequence,
iteration, branching.
b) Global and local variables.
c) Modularity, functions and procedures,
parameter passing by value and reference.
d) Use of an IDE to develop/debug a
program.

2.2.2 Software Development
a) Understand the waterfall lifecycle, agile
methodologies, extreme programming, the
spiral model and rapid application
development.
b) The relative merits and drawbacks of
different methodologies and when they might
be used.
c) Writing and following algorithms.
d) Different test strategies, including black
and white box testing and alpha and beta
testing.
e) Test programs that solve problems using
suitable test data and end user feedback,
justify a test strategy for a given situation.

2.3 Algorithms

The use of algorithms to describe
problems and standard algorithms

Confident Developing With
difficulty

2.3.1 Algorithms
a) Analysis and design of algorithms for a
given situation.
b) Standard algorithms (bubble sort, insertion
sort, binary search and linear search).
c) Implement bubble sort, insertion sort.
d) Implement binary and linear search.
e) Representing, adding data to and
removing data from queues and stacks.
f) Compare the suitability of different
algorithms for a given task and data set.

